Intertidal sea stars (Pisaster ochraceus) alter body shape in response to wave action.

نویسندگان

  • Kurtis J R Hayne
  • A Richard Palmer
چکیده

Sea stars are some of the largest mobile animals able to live in the harsh flow environment of wave-exposed, rocky intertidal shores. In addition, some species, such as the northeastern Pacific Pisaster ochraceus, are ecologically significant predators in a broad range of environments, from sheltered lagoons to the most wave-exposed shorelines. How they function and survive under such an extreme range of wave exposures remains a puzzle. Here we examine the ability of P. ochraceus to alter body form in response to variation in flow conditions. We found that sea stars in wave-exposed sites had narrower arms and were lighter per unit arm length than those from sheltered sites. Body form was tightly correlated with maximum velocity of breaking waves across four sites and also varied over time. In addition, field transplant experiments showed that these differences in shape were due primarily to phenotypic plasticity. Sea stars transplanted from a sheltered site to a more wave-exposed site became lighter per unit arm length, and developed narrower arms, after 3 months. The tight correlation between water flow and morphology suggests that wave force must be a significant selective factor acting on body shape. On exposed shores, narrower arms probably reduce both lift and drag in breaking waves. On protected shores, fatter arms may provide more thermal inertia to resist overheating, or more body volume for gametes. Such plastic changes in body shape represent a unique method by which sea stars adapt to spatial, seasonal and possibly short-term variation in flow conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climate change in the rocky intertidal zone: predicting and measuring the body temperature of a keystone predator

Forecasting the responses of populations and ecosystems to climate change requires that we understand both the direct effects of temperature on organism physiology and the indirect effects of temperature change on interactions such as predation and competition. The sea star Pisaster ochraceus is a keystone predator in the rocky intertidal zone with a broad geographic distribution along the west...

متن کامل

An intertidal sea star adjusts thermal inertia to avoid extreme body temperatures.

The body temperature of ectotherms is influenced by the interaction of abiotic conditions, morphology, and behavior. Although organisms living in different thermal habitats may exhibit morphological plasticity or move from unfavorable locations, there are few examples of animals adjusting their thermal properties in response to short-term changes in local conditions. Here, we show that the inte...

متن کامل

Decreased Temperature Facilitates Short-Term Sea Star Wasting Disease Survival in the Keystone Intertidal Sea Star Pisaster ochraceus

An extensive 2013 mass mortality event along the West Coast of North America due to Sea Star Wasting Disease (SSWD) has affected at least 20 species of sea stars. Among environmental factors potentially contributing to the timing of the current outbreak, increased coastal water temperatures are hypothesized to have contributed to previous and current outbreaks of SSWD. With a laboratory experim...

متن کامل

Survival and arm abscission are linked to regional heterothermy in an intertidal sea star.

Body temperature is a more pertinent variable to physiological stress than ambient air temperature. Modeling and empirical studies on the impacts of climate change on ectotherms usually assume that body temperature within organisms is uniform. However, many ectotherms show significant within-body temperature heterogeneity. The relationship between regional heterothermy and the response of ectot...

متن کامل

The influence of intertidal location and temperature on the metabolic cost of emersion in Pisaster ochraceus

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Vertical zonation within the intertidal results from an interaction between the physic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 216 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2013